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R O B E R T  C H E N 

ABSTRACT 

In their paper Some finitely additive probability (to appear in Ann.  Probability), 
Roger A. Purves and William D. Sudderth introduced the measurable  strategy 
idea. In this paper, we first generalize the measurable  strategy idea to the more 
general sigma-fields of subsets of X and prove an important  theorem. Then,  
based on this theorem, we state and prove a finitely additive version of 
Kolmogorov 's  law of the iterated logarithm and a finitely additive version of 
Har tman  and Wintner ' s  law of the iterated logarithm in a finitely additive 
setting. 

1. Introduction 

Let  X be a n o n - e m p t y  set with the discrete  topology,  H = X = with the produc t  

topology,  and F(X) be the set of all finitely addit ive probabi l i ty  measures  

defined on the class of all subsets  of X. As defined by Dubins  and Savage in [1], a 

s t ra tegy o- on H is a sequence  o- = (o0, o-~, o2,.  • • ), where  Oo is in F(X) and, for 

each posit ive integer  n, o', is a mapp ing  f rom X "  to F(X). For  each posit ive 

integer  n, any e l emen t  (x~, x2,-" ', x . )  in x" is called a partial  history with length 

n. Let  o" be  a s t ra tegy on H and p = (x~, x2, - • -, x , )  a part ial  history with length 

n;  then the condi t ional  s t ra tegy given the part ial  history p with respect  to the 

s t ra tegy o" is a s t ra tegy o-[p] -- ((o-[p])0, (o-[p]),, ( o ' [ p ] ) 2 , . . . )  on H defined by (i) 

(o'[p])o=~r.(p)=cr.(x~,x2,'",x,), i.e., (o'[p])0 is just the finitely addit ive 

probabi l i ty  measure  ~,(x,,x2,...,x,) and (ii) for each posit ive integer  m, 

(o-[p]),. is a mapp ing  f rom X "  to F(X) such that  (~r[p])m(x'l,x~,'",x')= 
or, +,, (x~, x2 , ' "  ", x,, x '1, x ~, '"  ", x ") for all (x '~, x ~ , . . . ,  x ") in X " .  In [ 1 ] Dubins  and 
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Savage showed that, for each strategy or on H, there is a natural finitely additive 

probability measure induced by the strategy o- defined on the class ~ of all 

clopen (a subset K of H is clopen if K is a closed and open subset of H)  subsets 

of H and they still used ~r to denote the induced finitely additive probability 

measure. 

Recently Purves and Sudderth [6] have shown that, for each strategy ~r on H, 

there exists a field M(~r) of subsets of H including all Borel subsets of H such 

that the finitely additive probability measure o- (induced by the strategy o- and 

considered by Dubins and Savage in [1]) can be extended from the class ~ to the 

larger field M(cr) with some nice properties (see theors. 2-1, 5-1, and 5-2 of [6]) 

and they still used o- to denote the new finitely additive probability measure 

defined on M(~r). Furthermore, they considered measurable strategies in the end 

of [6] and obtained an important result (see theor. 11-1 of [6]) which shows that 

the extension they studied agrees with the usual one on all sets of the product 

sigma-field if assumptions of countable additivity are imposed. 

In this paper, we first generalize the measurable strategy idea introduced by 

Purves and Sudderth to the more general sigma-fields of subsets of X and prove 

an analogue theorem (Theorem 2.1) to the one in [6]. Then, based on this 

analogue theorem, we state and prove a finitely additive version of Koi- 

mogorov's law of the iterated logarithm (Theorem 3.1) and a finitely additive 

version of Hartman and Wintner's law of the iterated logarithm (Theorem 3.2). 

Finally, we prove a finitely additive version (Theorem 4.1) of theorem 1 of [2] 

which gives a deeper understanding of the law of the iterated logarithm. 

Since, for each strategy cr on H, the field ~(~r) of subsets of H includes all 

Borel subsets of H and o" is a finitely additive probability measure on ~l/(o-), we 

can consider the triple (H, ,~(~) ,o ' )  as a finitely additive probability space. 

Hence a definition of integration for the real-valued functions defined on H can 

be found in [8] and this definition simplifies somewhat in our special setting. 

Later, we will call a real-valued function Y defined on H cr-integerable if the 

function Y is integrable with respect to the finitely additive probability space 

(H, s / (~) ,  o-) and ~(Y)  will be used to denote the integral of Y with respect to 

(H, ~¢(cr), or). 

2. Measurable strategies 

Suppose that X is a non-empty set with the discrete topology, H = X = with 

the product topology, and (/3,,/32,. " ) is a sequence of sigma-fields of subsets of 

X. For each positive integer m, let ~:"'®=/3,. × /3 , ,+1×""  be the product 
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sigma-field of subsets of H generated by (/3,,/3,.+,, • • • ) and, for each pair (m, n) 

of positive integers such that 1 =< m < n < % let ~ : " "  =/3,. ×/3,. +~ × • • • x/3,  be 

the product sigma-field of subsets of X . . . .  ~ generated by ( /3 , , /3 , ,+ , . . . , /3 , ) .  A 

strategy or on H is said to be measurable with respect to (/3,/32,. • • ) if or satisfies 

i) or0 is countably additive when restricted to /3~ and, for each n = 1, 2 , . . . ,  

every element (x,, x2, - . . ,  x , )  E X", or. (x,, x : , - -  -, x.)  is countably additive when 

restricted to /3.H. 

ii) For each n-> 1 and every A,+, @ /3.+1, orn(Xl, X2,'" ",x,)(A,+~) is , ~ ' " -  

measurable. 

Then, by Tulcea's extension theorem (see [5, pp. 162-164]), there is a unique 

countably additive probability measure u on .~J'® such that v ( A ) =  or(A) for 

every cylinder set A, i.e., A = B, x B2 × • • " where B~ C/3i for all i _>- 1 and for all 

except finitely many n, B. = X. Let ~ = ~(~1 . - )  be the completion of o ~ t ' -  

under u, then we have the following theorem which generalizes theorem I1-1 of 

[6] 

THEOREM 2.1. If or is a measurable strategy with respect to (/3,,/32,"" ), then 

i) s4(or) contains 

ii) or agrees with v on c¢ 

where v is the unique countably additive probability measure on ~ "  ® obtained by 

Tulcea's extension theorem and ~ is the completion of .~1.. under v. 

PROOF. The proof is essentially the same as that of theorem 11-1 of [6] 

(which the present theorem generalizes), but is given here for the sake of 

completeness and is proved in several rather technical lemmas as follows: 

LEMMA 2.1. L e t K b e a c l o p e n s u b s e t o f H a n d K  E ~ " ' .  Thenor(K)= v(K).  

PROOF. The proof is by induction on the structure of K and has been 

presented in detail in section 2 of [7]. Therefore  we omit it. 

An incomplete stop rule t on H is a mapping from H to the set {1,2, 3, • • • ~} 

such that if h, h ' ~  H, h '  agrees with h through the first t (h)  coordinates, then 

t ( h ) =  t(h'). A stop rule t is an incomplete stop rule such that t ( h ) < ~  for all 

h E H .  

LEMMA 2.2. Let t be a ~""-measurable incomplete stop rule. Then or(t < ~) = 

, , ( t  < 

PROOF. Notice that or(t < ~c)= sup {or(t -<_ s)[ s a stop rule on H} (by corol. 

5-3 of [6])=>sup{or(t =< n)ln--> 1}= sup{v(t  =< n ) l n  > 1} (by Lemma 2.1)= 

v(t < ~) (by the countable additivity of v on ~J"). 
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To complete the proof, it suffices to show that, for every stop rule r 

(2.1) o'(t _-< r)  =< supo'(t _-< n ) =  sup v(t _<- n). 

The proof of (2.1) is by induction on the structure of r. If r is structure 0, i.e., r is 

a constant, (2.1) is obvious. It remains to check the inductive step. 

As defined [1, p. 21], r [x](h)  = r ( x h ) -  1 and t[x](h) = t ( xh ) -  1 for all h in H 

where xh = (x ,x , , x2 , . . . ) i f  h = (x , ,x2 , - - - )E  H. As shown in [1, p. 21], for each 

x, r[x] is either a stop rule or identically equal to zero and z[x] has smaller 

structure than that of z if the structure of r is larger than zero. Similarly, t(x) is 

either a o~'=-measurable incomplete stop rule or identically equal to zero. 

Finally, the conditional strategy o'[x] is measurable with respect to (/32,/33," • • ) 

for each x in X, because cr is measurable with respect to (/31,/32, • • • ). Now let us 

compute 

o" (t =< r)  = i or [x ](It =< r]x)doro(X) = / o'[x ](t [ x ] =< r Ix ])do'o(x ) 

(2.2) 
, /  

<= J sup {~r[x ](t[x ] <-_ n )}d,r,,(x ) 

where [t _-< r]x = {h I h E H, t(xh )<= r(xh )} and the inequality follows from the 

inductive assumption. 

Let e > 0  and, for each x E X ,  N(x)=min{k:(cr[x](t[x]<-k) 
>= [sup, o'[x](t[x] <- n)]-  e}, and let M(h) = N(x,)+ 1 for h = ( x , , x 2 , . . . ) E  H. 

Then, by (2.2), 

o'(t <= T)<= l o'[xl(t[x ] <= N(x))do'o(x)+ e = / o ' [ x ] ( [ t  <_- Mlx)do'o(x)+ e 
(2.3) 

, , t  

= o ' ( t = < M ) + e  = v ( t = < M ) + e .  

The last step, which follows from Lemma 2.1, requires that M be o ¢l'=- 

measurable. This will follow easily from the /3t-measurability of the function 

x--->o'[x](Ax), where A is ff~'=-measurable and has finite structure. The 

quantity o[x](Ax) can be evaluated in a natural way as an iterated integral 

involving finitely additive extensions of the countably additive o-[p]'s (see [1, p. 

13]). A little reflection shows that the iterated integral has the same value as the 

usual Lebesgue integral. The/3rmeasurabil i ty of "x ~ o-[x](Ax)" then follows 

by the standard arguments. 

Since M is ,~" ~-measurable and v is countably additive, there exists a positive 

integer n such that u(M_-< n ) =  > 1 -  e. So, by (2.3), o'(t_-< r ) -  < v(t-< M ) +  e -- 
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v(t =< n) + 2e = o'(t -_< n) + 2e (the last equation is implied by Lemma 2.1). Since 

e is arbitrary, (2.1) is now proved. 

Let ~ be the collection of all ~"~-measurable incomplete stop rules t. For 

A C_ H, let 
v * ( A ) = i n f { v ( t < ~ ) l t E ~ , a  c_[t<~]} and 

v . ( A )  = sup{v(t = ~)l t  E @,A _D I t _  ~]}. 

Then it is easy to see that v . ( A ) =  1 - v*(A c) for all A C_ H. 

LEMMA 2.3. Let c~, = {A I A C H, v *(A ) = v , (A )}, then the collections ~ and 

~' coincide. Also, v* restricted to q~ is the completion of v and, in particular, v* is 

countably additive on qg. 

PROOF. By checking in order that ~£' is closed under the taking of comple- 

ments, finite unions, and countable increasing unions, it is easy to see that ~ '  is a 

sigma-field. 

Now let A be a cylinder set in ~i,  ~. Then there is a positive integer n and a set 

B C_ X" such that A = {(x ,x2, . .  " , x , , - ' . ) l ( x , , x 2 , . . . , x , ) E  B}. Let t ( h ) =  oo or 

n according as h ~  A or h ~ A ; and r ( h ) =  ~ or n according as h G A or h ~  A. 

Then t , r ~  and [ t < ~ ] = A  = [ r = ~ ] .  Thus A ~E~' and ~ ' _ D ~ ' = .  

To see ~ ' C  % let A E ~' .  Write O for sets of the form [t < ~] and C for sets 

of the form [t = ~] when t ~ 9. Then there exist sets O, and C, such that the O, 

are decreasing, the (2. are increasing, O, D_ A D_ C,, v ( O , ) ~  v*(A), and 

v(O.-C.) - -*O.  T h u s U ~ = , C , C _ A , A -  U ~ = , C . C  ( ' 1 ~ = , O . -  U ~ = , C , , a n d  

v ( N ~ = , O , - U ~ = , C , ) = 0 .  Thus A differs from U~=,C, by a subset of a 

.~"~-measurable set which is v-null and, hence, A E % Notice also that 

v*(A) = v(U~=,C,).  Hence v* agrees with the completion of v on ~ ' .  But ~ '  is 

clearly complete for v* and so is complete for v. Therefore ~ = ~' .  

As in Section 1, Y{ denotes the class of all clopen subsets of/4,  o- denotes the 

finitely additive probability measure defined on Y{ (induced by the strategy o-). 

For each open subset O of H, Let o ' (O)=  sup{o-(K)lK C Y{K _C O} and, for 

each closed subset C of H, let o(C)=in f (o- (K)IKEY{ ,KD_C}.  For each 

subset A of H, let o-*(A) = inf{o'(O)l O is open and A C_ O} and let o ' , (A)  = 

sup{o'(C)l C is closed and C _C A}. Let . if(c) = {A I A _C H, o-*(A) = o',(A)} 

and if A ~ .if(a),  we write ~r(A) for o'*(A) ( =  ~r,(A)). 

The next lemma finishes the proof of Theorem 2.1. 

LEMMA 2.4. For every A C H, v*(A)>=o'*(A)>=o',(A) > v , (A) .  Hence, 

sg(tr)D_ q~ and tr* agrees with v* on c~ (tr agrees with v on q¢). 

PROOF. By Lemma 2.2. 
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ii)  t[h 
PROOF. 

steps: 

3. Finitely additive versions of the law of the iterated logarithm 

In this section, we, first, s tate and p rove  a finitely addit ive version of 

K o l m o g o r o v ' s  law of the i te ra ted  logar i thm (based on T h e o r e m  2.1) and then 

state a finitely addit ive version of H a r t m a n  and Win tne r ' s  law of the i te ra ted  

logar i thm wi thout  the proof .  All proofs  are valid for  a coun tab ly  addi t ive set t ing 

if we consider  the p rob l ems  in a coord ina te  represen ta t ion  process.  The re fo re ,  

the results in this section are genera l iza t ions  of the classical results in a 

coord ina te  r ep resen ta t ion  process.  We start  with the following definitions. 

A s t ra tegy o- on H is an i ndependen t  s t ra tegy if there  exists a s equence  {Tn} in 

F ( X )  such that  ~r0= 3,1 and,  for each posit ive integer  n and all n - tup les  

p = (xl, x2 , ' "  . ,x~) in X",  o-,(p) = 3(,+,. o" = 3,t x 3,2x . . .  is wri t ten for  such a 

s trategy.  A s t ra tegy o- on H is an independen t  and identically dis t r ibuted 

s t ra tegy if there  is a finitely addit ive probabi l i ty  measu re  3' in F ( X )  such that  

o'0 = 3' and,  for each posit ive integer  n and every  e l emen t  (xl, x2,-" ", x , )  in X% 

t rn(x~,x2, . . . ,x . )  = 3'. We will write o" = 3, x 3, × . . .  for such a s trategy.  

A sequence  { Y,} of rea l -valued funct ions defined on H is called a sequence  of 

coord ina te  mappings  on H if, for  each n = 1 , 2 , . . . ,  Y, depends  only on the n th  

coordina te .  A sequence  { Y,} of rea l -valued funct ions defined on H is called a 

sequence  of identical  and coord ina te  mappings  if {Y.} is a sequence  of 

coord ina te  mappings  on H and Y. (h)  = Y,. (h)  wheneve r  h = 

( x ,  x2,." - , x , , "  . , x , . , . - . )  in H and x, = x,. for all m = 1 ,2 , -"  ", n = 1 , 2 , "  .. 

THEOREM 3.1. Suppose that cr = 3,~ × 3'2 x • • • is an independent strategy on H 

and { Y.  } is a sequence of coordinate mappings defined on H such that tT( Y. ) = 0 

a n d  o,(Y~)<~ for  all n >= 1. For each n >= 1, let a~ = ET-~o'(J Y~ - tr(Yi)12) = 

ET- ,o ' (Y]) ,  b . = 2 1 o g l o g a ~  if a2.>>-e ", b . = 2  if a~<-<_e ". Suppose that (i) 

l i m . ~  a ~ = ~ and (ii) for each n >= 1, there exists a positive constant K, such that 

I Y. [ <= K,a,b~' and l i m , ~ K .  = 0. Then, we have 

i) tr([h[l imsup{~= Yj(h)/a~b.}= l l ) =  l .  

liminf Y~(h )/aobo = - 1 = 1.  

It suffices to p rove  (i) and it is p roved  in the following const ruct ive  

Since, for  each n > 1, o ' (Y2,)< 2 ,  there  exists a posit ive integer  MR --> n such 

that  (a) tr([h I I Y ~ ( h ) l >  M~]) -< n-2 and ( b ) i f  the real -valued funct ion Z .  is 

def ined by Z ~ ( h ) = - M R  if Y . ( h )  < - M ~ ,  Z . ( h ) = M ,  if Y ~ ( h ) > M ~  and 
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Z , ( h ) = K + j 2  -M. if K + j 2 - M . < = Y . ( h ) < K + ( j + I ) 2  -M. where K =  

- M~, - M, + I , . . - , 0 , 1 , - . . , M ~ -  1 and j = 0 , 1 , 2 , . . . , 2  M--  1, then Z,  has the 

following two properties: ( i ) p o - ( Z . ) - o - ( Y . ) l = f o - ( Z . ) l < - _ n  -~  and (ii) 

f o ( I z .  - o ( Z . ) l ~ )  - o(Y~) l -<  n -~. 

Since, for each n -> 1, Y. depends only on the nth coordinate, Z.  depends 

only on the n th coordinate. Hence the set X can be decomposed into finitely 

many disjoint subsets of X by Z . ;  let P. be the partition of X by Z.. For each 

n _-> 1, let/3, be the sigma-field of subsets of X generated by the class P.. Since P. 

is a finite set,/3, is finite and y. is countably additive when restricted to/3.. Since 

¢r = 7~ x 7 2 x " ' ,  it is obvious that, for each n >= 1 and every A,+~ E/3,+t, 

o , (x , , x2 , . .  ",x,)(A,+t) is ~""-measurab le  where ff~'" =/3, x / 3 2 × . . .  ×/3, is 

the product sigma-field of subsets of X" generated by (/3~,/32,. •.,/3.). Now, by 

Theorem 2.1, there exists a countably additive probability measure t, on 
~ ' ~ = / 3 ~  x / 3 2 x . . ,  such that ~t/(o-)_D c¢ = cg(~,,=) (the completion of ~"® 

under u) and for all A E c¢, t r ( A ) =  u(A).  

It is obvious that, for each n _-> 1, Z.  is ff"~-measurable and fHZ. (h)du(h)  = 
~(z.):  ¢(z.), 

f [Z, (h)  u(Z.)12dt,(h) = u(I Z.  - u(Z,)12) = o-([ Z,, - o(Z,)12). 

Now, for each n => 1, let 

: z ,  - o - (Z , ) t  2) ,,(I z ,  - v ( z , ) r )  
i - I  i=l 

and e2.=21oglogd 2. if d2.>-e ~, e ~ = 2  if d~<=e ". Since 

Jtr(IZ. - o '(Z.)12)-tr(I  Y. - tr(Y.)12)I_- < n -: for all n ->_ 1 and l i m . ~ a ~ = ~ .  
lim._~{d~/a~}=l. Since IZ . I_ -<IY. I+2  -M-_-<IY.I +2-"  (recall that M._->n), 

l im.~{d~/a z.} = 1, and lim._~ a~ = o% we can find a sequence {L.} of positive real 

numbers such that I Z .  I <= L.d.e-~' for all n _-> 1 and l i m . ~  L. = 0. Now, applying 

Kolmogorov's law of the iterated logarithm to the probability space {H, ~, u} 

and the random variables {Z.}, we have 

( [  I limsup{ ,=, " / ])  (3.1) t, h d-~'e-~'E[Z~(h)-  u(Zj)] = 1 = 1. 

Notice that, for each n _-> 1, 

o'([h J J Y, (h) - Z,  (h)J > 2-" 1) -< tr(Ih I I Y. (h)J > M. ]) =< n-2(n < M.). 

Hence E~=, o([h II Y. ( h ) - Z .  (h)l> 2- ' ])< o~. By theorem 7-1 of [61 (a finitely 
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additive version of the Borel Cantelli lemma), we have o,(G~)= 1 where 
G~ =[h  II Y , ( h ) - Z . ( h ) [ > 2 - "  i.o.] c. Let 

G2 = [hllimsup{d-. 'e-.1~=l[Z,(h)-v(Z,)l}= 1], 

then tr(G2)= tr(G,)= tr(G. N G2)= 1. 
Now, it is enough to show that 

(3.2) G, NG2C_[h[l imsup{a- , 'b- . l~Yj(h)}= l]. 

First notice that if h E Gt, then 

Y~(h ) -  ~[Zj (h  ) -  ~r(Z,)] <- ~, [ Y,(h ) -  Z,(h )+ o.(Zj)] 
j=l j=l 

+ ~, I Y j (h ) -Z j (h ) l+  ~_, Io'(Z,)J 
j=K(h )+l j=K(h)+l 

<-_ [Yj(h)-Zj(h)+~r(Z,) l  + ~ (2- ,+ j  2), 
j = l  i=K(h)+l 

where K(h) is the last time such that h ~[h'li Y. (h ' ) -Z . (h ' ) l>2-"] .  Since 
lim.~{a,b,} = ~ and ' l im,~{d.e,/a.b.} = 1, 

n 

limsup {a~Z b; ' .  ~ ~(h)} = limsup{a;1 b-.l,~=l[Zj(h)-o'(Zj)]} 

= limsup{d-, 'e-J,~[Zj(h)-v(Zj)]}  

if h E G,. Next, if h E G2, then limsup.~={d-,'e-.'E,=,[Zj(h)- v(Z~)]} = 1. 
Therefore, if h @ G~ N G2, then l imsup .~{a ;  1 b~ I. Y.;=~ Yj(h)} = 1. Hence (3.2) 
holds and the proof of Theorem 3.1 now is complete. 

THEOREM 3.2. Suppose that tr = 3, × 3i x .. • is an independent and identically 
distributed strategy on H and { Y. } is a sequence of identical, coordinate mappings 
defined on H. Suppose that or(Y1)= 0 and cr(Y~)= 1. Then, we have 

- ~  V2n loglog nj=1 

ii) ~ r ( [ h r l i m i n f ,  1 ~ Y j ( h ) = - l ] ) = l .  
, ~  V 2 n l o g l o g n j ~  
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PROOF. The proof is essentially the same as the one given in [3], i.e., reduce 

the sequence { Y, } to a new sequence {Z.} such that {Z,} satisfies the conditions 

stated in Theorem 3.1. Next, show that 

• 1 " 
i) hm = ~ ~ ( Z j ) = 0 ,  

.~= ~/2n log log n,=~ 

if) ] i m [ , ~ r ( Z i - c r ( Z i ) ) 2 / X / 2 n l o g i o g n ] = l ,  and 

iii) tr([h [ Y. (h) :~ Z,  (h)i.o.]) = 0. 

Therefore, the details of the proof are omitted. 

4. A further remark 

In [2], Freedman obtained the following result: "Suppose that Y1, Y2,'" • are 
uniformly bounded i.i.d, random variables defined on a probability space 
(~, ~, P) such that E(Y~) = 0. Then E{exp(tS2)} = fnexp ( tS2 (w) )dP(w)  < ~ for 
all 0 < t < ~, where S = sup,_>3{E~'=l Yj/~/n  log log n}". This result gives us a 
deeper understanding of the law of the iterated logarithm. In this section, we will 

show that the Freedman result holds in our finitely additive setting. 

LEMMA 4.1. Suppose that or = 3' × 3' × Y x . . .  is an independent, identically 
distributed strategy on H and { Y. } is a sequence of identical, coordinate mappings 
defined on H. Suppose that o'(Y,)= 0, o'(Y~)= a 2 > 0 ,  I Y, I<-_K <oo (K is a 
positive constant), and there exists a positive real number eo such that ~(  Y~ >-_ O) >= 
e0>0.  Then, inf,~,~r([h lET-, ~(h)=>0])  = c >0 .  

PROOF. Without loss of generality, we can and do assume that K = 1. For 
each n _-> 1, choose a positive integer M, _-> n such that if the real-valued function 
Z,  defined by Z , ( h ) =  l + j 2  -M- if l + j 2  -M- <_- Y , ( h ) <  I + ( j  + 1)2 -M-, Z , ( h ) =  1 
if Y . ( h ) = l  where l =  - 1 ,  0 and j = 0 , 1 , 2 , . . . , 2  M . - 1 ,  then 1_-> 
o'({ Z.  - ar(Z.)[2) => (1 - 2n-2)a 2. 

Now, as in Theorem 3.1, we obtain a sequence {/3.} of sigma-fields of subsets 
of X by the sequence {Z,}. Let .~"~ =/3~ ×/32 × " ", u be the uniquely countably 
additive probability measure defined on ~-l.= (obtained by Tulcea's extension 

theorem). Notice that Z,  -< Y, =<Z. +2  "(M, -_> n), hence cr(Z,)<-_cr(Y,) <- _ 
t r (Z , )+  2-", i.e., 0 =  > tr(Z.)  = > - 2  ". Now by the central limit theorem, 

= exp ( -  t2/2)dt = 2c, > O. 



218 R. CHEN Israel J. Math. 

n Since 0 = Ei=, v ( Z , ) >  - 1 for all n => 1, 

l im2nfv([h l[ ,=~ZJ(h)  / 

=> lira ~, k h ) -  
n ~ J = 1 

There fo re ,  there  exists a 

v([h I :gr=,Z,(h) -> 01) --- c, > 0 .  
hence  cr([h lY~;,Y,.(h)_-> 01)= > 

For  l <-_n <=N, 

~(I z,  - ~ ( z , ) l = )~  o 

~(/,)1 / ~/,~ , , ( I / , -  v( / ,  ) l=) _>-1 ] ) =  2c, > 0 .  

positive integer  N such that,  if n > N, 

But [hlEr=,Z,(h)>-_Olc_[hiE~=,Y,(h)>-O], 
c , > 0 i f  n > N .  

o o])o o, h, 0.,--, .  2.. . . ,°, ,  

= I~I ~([h I Yj(h)=~ 01)~ e~, e eo ~ > 0 .  
j = l  

The re fo r e  inf,_-, tr([h [Ej=, Yj(h ) = 0]) = mm {e 0 N, c,} > 0. 

LEMMA 4.2. Suppose that o" and {Yn} are as defined in Lemma 4.1. Let, for 
each n >= 1, Z ,  be the real-valued-function defined on H by Z , ( h  ) = l + (j + 1)2 -" 

i - f / + j 2 - " <  Y.(h)<=l+Q" + l)2 -" and Z . ( h ) = 2 - " - I  if Y . ( h ) - I  where l =  
0 , - 1  and j = O, 1, 2, . . ., 2" - l. Then 

m>--I ~= j = r n  

PROOF. Since [h I £~=,-Z, (h )  => 0] _D [h I£,=,. Yi(h)  => 0], o" = V x 3' x . - -  is an 
independent ,  identically distr ibuted strategy,  and { Y, } is a sequence of identical,  

coord ina te  mappings defined on H, by L e m m a  4.1, L e m m a  4.2 is obvious.  

LEMMA 4.3. Suppose that tr, {Y,}, and {Z,} are as defined in Lemma 4.2. 
Then tr(e'Z,) = > o'(e 'z.) j:or all 0<= t <oc and n >= 1. 

PROOF. The  proof  is s t raightforward and is omit ted.  

LEMMA 4.4. Suppose that tr, { Y. }, and { Z .  } are as defined in Lemma 4.3 and 
suppose that T = sup.  ~3 {E,=, Z , /X /n  log log n}. Then, for all 0 < t < 0% ~ (e ,r2) < 
0 0 .  

PROOF. As in L e m m a  4.1, using {;2.}, we can obtain a sequence  {/3.} of 

sigma-fields of subsets of X and a unique countably  addit ive probabil i ty  measure  

v on the product  sigma field .~" ~ =/31 x/32 x . . . .  Since T 2 is ~ "  ®-measurable, it 
is sufficient to show that  f ,e'r2(h)dv(h) = v(e ' r~)<  oo for all t < 0 .  
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Notice that 

T = s u p l ~ , Z f l X / n l o g l o g n l > - {  ZflX/31oglog3 => -3 /X/31oglog3,  
n_-->3 [ , j = l  j = l  

hence [ h i T ( h ) <  s]--- 4, if s < -3/~/3]-0g log 3. Plainly for 1 < L < ~, u(e'r~)<= 
L + fTv([h l e'T~'"'> w])dw.Now let I+(L) = fTv([h IT(h) > t-~(log w)~])dw and 
I - (L)  = fTv([h IT(h)< - t ½(logw)~])dw. It is obvious that I - ( L ) <  ~ for all 
L > 0, so it suffices to show that, for L large, I÷(L)< oo. The remainder of the 
argument for I÷(L)< ~ for large L is essentially the same as the one given in [2] 
except that we have to notice that 

v( h 2 Z j ( h ) > y  <-_e-"v(exp( t j~Zj) )  ( t > O , y > O ) = e - " j ~ v ( e ' Z , )  

<__e-',[v(e'Z,)] n 

(by Lemma 4.3). Therefore, we omit the detail. 

THEOREM 4.1. Suppose that (r = 3' x 3" x . . .  is an independent, identically 
distributed strategy on H and { Y~ } is a sequence of identical, coordinate mappings 
defined on H such that I Y, ] <= K < ~ (K is a positive constant) and (r (Y  0 = O. 
Then o'( e 's~) < o~ for all 0 < t < % where S up~__-3{£;:~ Yj/X/n log log n}. 

PROOF. Without loss of generality, we can and do assume that K = 1. Now, if 
~r(Y~) = 0 or o-(Y~)> 0 but ~(Y~ < 0 )=  1, then Theorem 4.1 is obvious. So we 
assume that (r(Y~)= a 2 > 0  and ~(Y~_->0)= eo>0 .  Now, for each n-> 1, let 
Z ~ ( h ) = l + ( l ' + l ) 2 - "  if / + j 2 - "  < Y~(h)<_-l+(j+l)2  -~ and Z ~ ( h ) =  - 1 + 2 - "  
i f Y , ( h ) = - l w h e r e l =  - 1 , 0 a n d  j = 0 , 1 , 2 , . . - , 2  ~ - l . T h e n , f o r a l l n = > l a n d  
all h E H, 

2 YJ(h) -< 2 Z,(h)  --< 2 Yj(h) + 2 2 - ' <  2 Yj(h)+  1. 
j = I  j=l  j = l  j = l  j = l  

Hence 

M 

S(h)=supl~ '~  Y j ( h ) / \ / n l o g l o g n  } 
n_-->3 k j = l  

" / <= sup l ~, Z, ( h ) / ",/ n log log n + 1/X/31oglog3. 
n ~ 3  t j = l  / 

Therefore S =< T =< S + 1/~/3 log log 3. Now, suppose that S => 0, then $2=  < T:. If 
S < 0, then (T - l/X/3 log log 3) 2 => S 2. But (T - 1/~/3 log log 3) 2 =< 
2(T2+l /31oglog3) .  Therefore S2<=2[T:+l/31oglog3]. By Lemma 4.4, 
v(e'r~) = tr(e'r2)<o~ for all 0 < t < 2 .  Therefore tr(e'S~)<oo for all 0 <  t <o~ 
(since e 's2 is Borel-measurable). 
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